Genotype and phenotype of *Nicotiana alata* x *Nicotina rastroensis*

Gametophytic self-incompatibility (SI) is a process which enables plants to prevent inbreeding depression by rejecting self-pollen and pollen from closely related individuals. S-specific pollen rejection is controlled on a multi-allelic locus, the S-locus. If the S-allele of the haploid pollen matches either of the diploid pistil S-alleles, pollen tube growth is inhibited. The product of the S-locus is the active ribonuclease, S-RNase. We set out to test whether putative S_{C10} S-RNase growth from *Nicotiana rastroensis* truly segregates as an allele of the S-locus. We used a hybrid of *Nicotiana alata* and *N. rastroensis* for our study. The *N. alata* parent was homozygous for the S_{105} S-allele and the *N. rastroensis* parent had an S_{C10} and another unknown S-allele (S_{x}). Our experiment was to find out the genotype of the hybrids, and test the plants for rejection of S_{C10} pollen. We emasculated and pollinated flowers with S_{A2}, S_{105}, and S_{C10} pollen from *N. alata*. S-RNase expression leading to a pollen rejection phenotype was determined by fruit set. SDS-PAGE and western blot analysis with specific S-RNase antibodies was used to determine the genotype of the hybrids. The result expected was 50% of the plants have S_{105}/S_{C10}, and 50% have S_{105} and the unknown S_{x}, but we found that 75% contained $S_{C10} + 25\%$ had S_{x}. We saw that *N. rastroensis* S_{C10} S-RNase rejects S_{C10} pollen and accepts S_{105} pollen. Thus, we observed allele specific pollen rejection from the S_{C10} allele.