METHOD FOR OBTAINING THE TREES OF A V VERTEX COMPLETE GRAPH FROM THE TREES OF A V-I COMPLETE GRAPH

By G. W. Zobrist, Assistant Professor of Electrical Engineering
University of Missouri, and
G. V. Lago, Professor of Electrical Engineering
University of Missouri.

Reprinted from

Matrix and Tensor Quarterly
Volume 15, Number 3, March 1965

THE TENSOR SOCIETY OF GREAT BRITAIN
The Engineering Experiment Station was organized in 1909 as a part of the College of Engineering. The staff of the Station includes all members of the Faculty of the College of Engineering, together with Research Assistants supported by the Station Funds.

The Station is primarily an engineering research institution engaged in the investigation of fundamental engineering problems of general interest, in the improvement of engineering design, and in the development of new industrial processes.

The Station desires particularly to cooperate with industries of Missouri in the solution of such problems. For this purpose, there is available not only the special equipment belonging to the Station but all of the equipment and facilities of the College of Engineering not in immediate use for class instruction.

Inquiries regarding these matters should be addressed to

The Director
Engineering Experiment Station
University of Missouri
Columbia, Missouri
Method for Obtaining the Trees of a \(v \) Vertex Complete Graph from the Trees of a \(v-1 \) Vertex Complete Graph

A method\(^1\),\(^2\) is described for obtaining the trees of a \(v \) vertex complete graph through an iterative process. The iterative process is as follows, first find all the trees of a 3 vertex complete graph, then by an appropriate substitution the trees of a 4 vertex complete graph can be found. Continuing in this manner the trees of a \(v \) vertex complete graph can be found from the trees of a \(v-1 \) vertex complete graph.

This method follows from inspection of Fig. 1. Each subgraph is a quasi-complete graph, i.e., a complete graph with some parallel edges, the trees of these quasi-complete graphs will produce the trees of the next order higher complete graph with an appropriate edge included in each of the 4 sets of trees. This is a result of separating the trees of complete graph of 5 vertices into 4 distinct subsets in the following way. Remove edge \((1,5)\) and let vertices 1 and 5 coalesce, the trees of this resultant graph contain all trees (when edge \((1,5)\) is included in each tree of the resultant graph) which contain edge \((1,5)\). Remove edge \((1,5)\) from the complete graph of 5 vertices. Now remove edge \((2,5)\) and let vertices 2 and 5 coalesce, the resultant graph contains all the trees of the original complete graph, which contain edge \((2,5)\) but not edge \((1,5)\), again when edge \((2,5)\) is included. Continue in this manner until edge \((4,5)\) is reached. The first set contains all the trees which have edge \((1,5)\), the second set consists of those trees which do not have edge \((1,5)\), but do have edge \((2,5)\). This process is continued until the last set is reached, this set contains edge \((4,5)\) but not edges \((1,5), (2,5), (3,5)\). This development separates the trees of a complete graph into 4 distinct sets, i.e., given any tree \(t \), where \(t \) is a member of the set of all trees of the complete graph of 5 vertices, \(t \) can be found in one and only one of the 4 distinct sets, as developed above.

Before stating the rule for finding the trees of a \(v \) vertex complete graph from the trees of a \(v-1 \) vertex complete graph, an example is given for clarity. Assume the trees of a 4 vertex complete graph are known. Fig. 1 shows the trees of the 5 vertex complete graph graphically. The trees which contain edge \((1,5)\) are the trees of a 4 vertex complete graph which has 3 parallel edges. The edges between vertices 1 and 2 are \((1,2)\) and \((2,5)\), the edges between vertices 1 and 3 are \((1,3)\) and \((3,5)\) and the edges between vertices 1 and 4 are \((1,4)\) and \((4,5)\).

Therefore the trees of the first set are, \((1,5)UT\) (4 vertex complete graph), with edge \((1,2)\) replaced by \((1,2) + (2,5)\), \((1,3)\) by \((1,3) + (3,5)\) and \((1,4)\) by \((1,4) + (4,5)\). The trees of the second set are, \((2,5)UT\) (4 vertex complete graph), with edge \((2,3)\) replaced by \((2,3) + (3,5)\) and \((2,4)\) by \((2,4) + (4,5)\). The trees of the third set are, \((3,5)UT\) (4 vertex complete graph), with edge \((3,4)\) replaced by \((3,4) + (4,5)\). The trees of the final set are, \((4,5)UT\) (4 vertex complete graph). If the trees of the four quasi-complete graphs are collected and each set has edge \((1,5), (2,5), (3,5)\) or \((4,5)\) included as noted, this set of trees will comprise the trees of a 5 vertex complete graph.

This was easily generalized so that the trees of a \(v \) vertex complete graph can be found from the trees of a \(v-1 \) vertex complete graph. Assume the trees of a \(v-1 \) vertex complete graph are known, denote these trees by \(T_{v-1} \), the trees of a \(v \) vertex complete graph are denoted by \(T_v \). The rule for finding \(T_v \) from \(T_{v-1} \) is,
\[T_5 = T \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix} = (1,5) \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} \]

\[+ (2,5) \begin{bmatrix} 1 & 2,5 & 1 & 4 \end{bmatrix} + (3,5) \begin{bmatrix} 2 & 3,5 & 4 \end{bmatrix} \]

\[+ (4,5) \begin{bmatrix} 2 & 4,5 & 3 \end{bmatrix} \]

\[T_4 = T \begin{bmatrix} 1 & 2 & 3 & 4,5 \end{bmatrix} \]

\[T \begin{bmatrix} \end{bmatrix} \equiv \text{Trees of} \]

Fig. 1
\[T_v = (1, v)UTv^{-1}, \quad \text{with} \quad \begin{cases} (1, 2) = (1, 2) + (2, v) \\ (1, 3) = (1, 3) + (3, v) \end{cases} \]

\[+ (2, v)UTv^{-1}, \quad \text{with} \quad \begin{cases} (2, 3) = (2, 3) + (3, v) \\ (2, 4) = (2, 4) + (4, v) \end{cases} \]

\[+ \ldots + \]

\[+ (v-2, v)UTv^{-1}, \quad \text{with} \quad \begin{cases} (v-2, v-1) = (v-2, v-1) + (v-1, v) \end{cases} \]

\[+ (v-1, v)UTv^{-1}, \]
PUBLICATIONS OF THE ENGINEERING REPRINT SERIES

Copies of publications may be secured from the Director of the Engineering Experiment Station, University of Missouri. Single copies may be obtained free unless otherwise indicated until the supply is exhausted. Requests for additional copies will be considered upon further inquiry.

Reprint No.

58. Controlled-Deflection Design Method for Reinforced Concrete Beams and Slabs by Adrian Pauw, Professor of Civil Engineering, University of Missouri. Reprinted from Journal of The American Concrete Institute, Vol. 59, No. 5, May 1962.

60. Discussion of an Article by G. S. Ramaswamy and M. Ramaiyah: Characteristic Equation of Cylindrical Shells—A Simplified Method of Solution by Adrian Pauw, Professor of Civil Engineering, University of Missouri, and W. M. Sangster, Professor of Civil Engineering, University of Missouri. Reprinted from Journal of The American Concrete Institute Concrete Briefs, pages 1505-1509, October 1962.

67. Creep of Concrete: Influencing Factors and Prediction by A. M. Neville, Chairman, Division of Engineering, University of Alberta, Calgary, and B. L. Meyers, Assistant Professor of Civil Engineering, University of Missouri.

Effect of Creep and Shrinkage on the Behavior of Reinforced Concrete Members by A. Pauw, Professor and Chairman of Civil Engineering, and B. L. Meyers, Assistant Professor of Civil Engineering, University of Missouri. Reprinted from Symposium on Creep of Concrete, Publication SP-9, The American Concrete Institute.

68. A Method of Data List Processing with Application to EEG Analysis by C. M. Philpott, Control Data Corporation, St. Paul, Minnesota, and G. V. Lago, Professor of Electrical Engineering, University of Missouri. Reprinted from Communications of the ACM, Volume 5, Number 5, May, 1965.

69. Method for Obtaining the Trees of a v Vertex Complete Graph from the Trees of a v-1 Complete Graph by G. W. Zobrist, Assistant Professor of Electrical Engineering, University of Missouri, and G. V. Lago, Professor of Electrical Engineering, University of Missouri. Reprinted from the Matrix and Tensor Quarterly, Volume 15, Number 3, March, 1965.
The University of Missouri
SCHOOLS AND COLLEGES

For the Divisions at Columbia:
College of Agriculture
School of Forestry
School of Home Economics
College of Arts and Science
School of Social Work
School of Business and Public Administration
College of Education
College of Engineering
Engineering Experiment Station
Graduate School
School of Journalism
School of Law
School of Medicine
School of Nursing
University Extension Division
School of Veterinary Medicine

For the Division at Rolla:
School of Mines and Metallurgy